

LIFE CYCLE ASSESSMENT (LCA) SEBAGAI METODE KAJIAN DAMPAK LINGKUNGAN PROSES PENGOLAHAN AIR BERSIH DI INSTALASI PENGOLAHAN AIR (IPA) SIWALANPANJI

Geafiata Amalia Nurbaiti, Tuhu Agung Rachmanto dan Aulia Ulfah Farahdiba Program Studi Teknik Lingkungan, Universitas Pembangunan Nasional "Veteran" Jawa Timur Email: tekpro611@gmail.com

ABSTRAK

Instalasi pengolahan air bersih Siwalanpanji dengan pengolahan secara konvensional maupun non konvensional memberikan dampak ke lingkungan akibat adanya proses pengolahan air bersih. Penelitian ini bertujuan mengidentifikasi potensi dampak yang ditimbulkan terhadap lingkungan, menganalisis faktor penyebab dampak lingkungan yang timbul, serta memberikan rekomendasi pengelolaan dampak lingkungan sebagai rencana alternatif perbaikan yang tepat dan ramah lingkungan menggunakan *Life Cycle Assessment* (LCA) yang akan dianalisis melalui software Simapro. LCA merupakan suatu metode pendekatan yang digunakan untuk mengidentifikasi dan menganalisis dampak lingkungan yang dihasilkan dari seluruh tahapan siklus hidup produk, sehingga akan diketahui bagian mana saja yang menimbulkan dampak terhadap lingkungan paling besar. Tiga dampak tertinggi yang muncul dari metode *Impact 2002*+ adalah *Respiratory inorganics*, *Global Warming*, dan *Non-Renewable Energy*. Faktor penyebab timbulnya dampak tersebut berasal dari adanya penggunaan listrik dan pemberian bahan kimia berupa koagulan dan disinfektan. Alternatif perbaikan yang dapat diberikan untuk mengurangi dampak yang terjadi antara lain dengan meningkatkan efisiensi peralatan dan substitusi koagulan *Poly Aluminium Chloride* dengan *Aluminium Sulfate*.

Kata kunci: Life Cycle Assessment, Proses Pengolahan Air Bersih, Simapro

ABSTRACT

The Siwalanpanji Water Treatment Plant with conventional and non-conventional processing has an impact on the environment due to the water treatment process. This study aims to identify potential impacts on the environment, analyze factors causing environmental impacts that arise, and provide recommendations for environmental impact management as an alternative plan for appropriate and environmentally friendly improvements using Life Cycle Assessment (LCA) which will be analyzed through Simapro software. LCA is an approach method used to identify and analyze environmental impacts resulting from all stages of the product life cycle so that it will be known which parts have the greatest impact on the environment. The three highest impacts that arise from the Impact 2002+ method are Respiratory inorganics, Global Warming, and Non-Renewable Energy. Factors causing these impacts come from the use of electricity and the provision of chemicals in the form of coagulants and disinfectants. Alternative improvements that can be given to reduce the impact that occurs include increasing equipment efficiency and substitution of Poly Aluminum Chloride coagulant with Aluminum Sulfate.

Keywords: Life Cycle Assessment, Water Treatment Process, Simapro

E-ISSN: 2777-1032 P-ISSN: 2777-1040

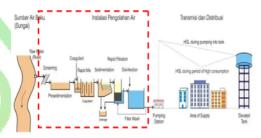
PENDAHULUAN

Instalasi pengolahan air bersih merupakan sebuah struktur bangunan yang dirancang berfungsi sebagai proses untuk menurunkan konsentrasi polutan yang terdapat didalam air baku, sehingga dapat meningkatkan kualitas air agar dapat memenuhi persyaratan baku mutu untuk air bersih sesuai dengan regulasi yang berlaku, Peraturan Menteri Kesehatan Republik Indonesia No. 32 Tahun 2017.

Instalasi pengolahan air bersih merupakan salah satu fasilitas publik yang menyumbang dampak negatif ke lingkungan cukup signifikan. Hal ini didasari karena konsumsi listrik dan bahan kimia dalam jumlah besar guna menunjang aktivitas proses produksinya. Semakin besar kapasitas pengolahan air bersih, maka semakin sering pula siklus itu berjalan dan semakin besar limbah serta dampak lingkungan yang akan dihasilkan. Oleh sebab itu, instalasi pengolahan air bersih milik PDAM wajib bertanggung jawab atas dampak lingkungan ditimbulkan (Bhaskoro Ramadhan, 2017).


Terdapat suatu pendekatan khusus yang dapat digunakan untuk mengidentifikasi dan menganalisis dampak lingkungan yang terjadi yakni metode Life Cycle Assessment (LCA). mengestimasikan dapat lingkungan kumulatif yang dihasilkan dari seluruh tahapan siklus hidup produk, sehingga akan diketahui bagian mana saja yang menimbulkan dampak terhadap lingkungan paling besar (Acero et al., 2014). Dengan adanya metode LCA ini, diharapkan mampu mengkaji dampak lingkungan yang dihasilkan Instalasi Pengolahan Air oleh Siwalanpanji selama proses pengolahan air itu berlangsung serta dapat memberikan rekomendasi alternatif pengelolaan yang ramah lingkungan.

METODE PENELITIAN


A. Tahap Awal Penelitian

Fase pertama adalah penentuan ruang lingkup dan unit fungsi. Ruang lingkup (scope) yang dianalisis bersifat gate to gate yaitu seluruh unit pada proses pengolahan air bersih. Proses pengolahan air bersih di IPA Siwalanpanji terdiri dari 2 pengolahan yaitu pengolahan konvensional yang terdiri dari unit intake, praklorinasi, prasedimentasi,

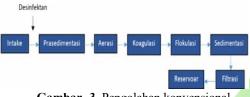
aerasi, koagulasi, flokulasi, sedimentasi, filtrasi, reservoar dan pengolahan non konvensional yakni mulai dari *intake*, prasedimentasi, ultrafiltrasi, dan reservoar. Unit fungsi penelitian ini adalah 1 m³. Setelah itu, melakukan observasi lapangan dan wawancara.

Gambar -1. *Scope* yang dianalisis proses pengolahan konvensional

Gambar -2. *Scope* yang dianalisis proses pengolahan non konvensional

B. Tahap Analisis Data

Langkah selanjutnya mengumpulkan data yang akan digunakan untuk penelitian yang kemudian di input ke dalam software Simapro 9.0.0.47 (life cycle inventory). Data yang di input berupa bahan baku dan material, konsumsi energi, produk samping yang dihasilkan, setiap unit emisi instalasi pengolahan air bersih. Metode yang digunakan adalah Impact 2002+ karena menyesuaikan kondisi lapangan serta dinilai merupakan metode paling baru dari metode lain, sehingga kategori dampak yang muncul juga akan lebih bervariasi. Terdapat 15 dampak yang muncul dari metode Impact 2002+, tapi peneliti hanya memfokuskan 3 dampak terbesar yang muncul.


Dalam fase penentuan dampak lingkungan, terdapat beberapa tahapan yang harus dilalui seperti characterization, normalization, weighting, dan single score. Characterization merupakan langkah untuk membandingkan hasil life cycle inventory pada setiap kategori. Normalization didapatkan dari membagi hasil characterization dengan nilai

E-ISSN: 2777-1032 envirous.upnjatim.ac.id P-ISSN: 2777-1040 normalization. Weighting (pembobotan) adalah cara untuk membandingkan beragam potensi dampak lingkungan yang muncul, dilakukan dengan cara mengalikan hasil normalization nilai potensial oleh faktor bobot (Hamonangan dkk., 2017). Kemudian, seluruh potensi dampak lingkungan yang muncul dikonversi ke single score dengan memperlihatkan tiap-tiap proses yang mempunyai dampak lingkungan.

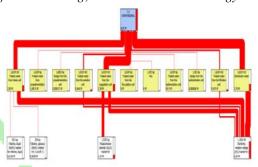
HASIL DAN PEMBAHASAN

A. Proses Pengolahan

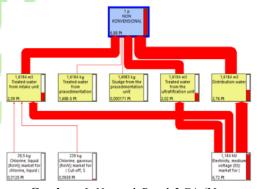
Alur proses pengolahan air bersih di IPA Siwalanpanji dapat diamati pada gambar 3 dan 4 di bawah.

Gambar -3. Pengolahan konvensional

Gambar -4. Pengolahan non konvensional


Bahan kimia yang digunakan adalah *Poly Aluminium Chloride* (koagulan), Gas klor dan Kaporit (disinfektan). Konsumsi energi berasal dari pompa dan blower. Perharinya, kebutuhan listrik yang dipakai mencapai 3142,64 kWh. Sedangkan pemakaian bahan kimia yang digunakan PAC 1520,88 kg, Gas klor 228,93 kg, Kaporit 29,51 kg.

B. Proses Pengolahan Data


Pengolahan data LCA memakai *software* Simapro, Kekurangan software ini adalah tidak semua *database* tersedia sehingga perlu melakukan pendekatan material agar sesuai dengan kondisi *eksisting* (Althaus *et al.*, 2010).

Hasil dari pengolahan data ini akan memunculkan Network Result yang menandakan bahwa dari keseluruhan proses yang ada, terdapat beberapa atau bahkan semua proses berdampak ke lingkungan. Dari network result ini, dapat diketahui dampak lingkungan yang muncul berasal dari unit intake, aerasi, koagulasi, filtrasi, ultrafiltrasi, dan reservoar. Tanda panah ke atas pada network menggambarkan pengaruh terhadap lingkungan sedangkan garis merah yang tertera menunjukkan adanya hubungan yang saling berperan antara bahan yang di input dengan unit/proses terkait. Ketebalan garis merah mengisyaratkan adanya urgensi dari setiap proses yang berdampak pada lingkungan. Tidak terdapatnya garis hijau mengartikan seluruh bahan kimia tidak dapat terproses secara sempurna sehingga masih menimbulkan dampak terhadap lingkungan.

Tiga dampak tertinggi yang muncul dari penelitian ini yaitu *respiratory inorganics*, *global warming*, dan *non-renewable energy*.

Gambar -5. Network Result LCA (Konvensional)

Gambar -6. Network Result LCA (Non Konvensional)

Impact category	Twin	Total	Treated water Stea intake unit	Erund vaner from prandimentation unit	Study from the procedimentation unit	Treated water from the accurion unit	Tinused water from the computation unit	Treated water from the formation unit	Floor	Erested water from the refinentation unit	Shelps from the refinentation unit	Treated water from the filtration unit	Distribution
	CSSS	135.662											
Carcinopeu	19	3	23,469027			4,521009	75,83903					4,338965	256090
	CSEC	405,2874											
Non-carriar great		40,314	12.23690	0.003/1004	6.62510.8527	1,2100806	175,600			0.000790279	0.00000040	3,8176309	1,0000
Requisitory	kePhG3	68,00040		Contract Contract	- Constant	- 0,11111	7 40000	_	_	Community of		1,00. 10.00	- 3411 44
iorganics	40	1	11,1140			4,3117974	16,490364					3,7817062	2534766
a marine	Bq C-14												
ndation	- 14	30116,28	4181,2465			285,51014	25790,016					271,82986	180",618
Ocean layer	igac.	E/800775	1,000,000,00			0.00E-04	0.000487545					1.085.04	4.11E-01
Aspletion	11 44	536753	-	-	-	1,715.46	630041343	-	-	-	-	C.01010060	4,118-40
Temperatury	10,000	12	0.13671391			0.020954948	0.5739685					1000000	0.03546
Appelic	kg 190	_	4,554-1555			Contracon	C) 10000		-			_	2,112
ecritoxicity		BRHEMI	4400248	45413429	4380,251	4279290.4	20473459			15433,85	155847.47	56000.2	4033404
erneia	Ng TEO	110,13											
ecression	100		14952,097	2,745-11	2,776-00	1190,3205	119774,54		-	9,745-11	9,845-10	1094,7968	7280,000
Terebia		121,0078											
acid estri	lg 900 mg	43,9460	22,610752			4,1107902	71,272849		-	-	-	5,8090212	25,29470
Last compation	nilogan Ne	C.74601	4.2544839			0.29495401	38.32189					0.27130625	1,804159
Land compation Assatis	- 54	16.11861	4,014607		-	1,290940	PF, ACHIEF	_	-	_	-	12.3890	1,894139
acalification	34 900 m	20,41001	4.075766			1.0966946	21.53496					1.004777	470760
Appetie	To POLE	242948	25 7 700			Common	110,000	_	-	_	_	£38611138	
nativalization.	las	2	0.14217049			0.3071/089	LISTRICAL					3	\$411163
Olohid visiting	by CCC eq.		1225,9196			222,66076	3287,8175					204,27009	1316,309
Samoralia	16	EIGIE24											
esergy	primary	3	11344,681			2756,6296	44007,806					2489,3840	34555,85
Moresi		DRIVED											
RESULTION.	MI sayita	- 6	34,59407			6,62627325	1258,7972					0,75443425	3,016060

Gambar -7. Characterization (Konvensional)

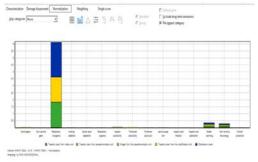
E-ISSN: 2777-1032 P-ISSN: 2777-1040

LIFE CYCLE ASSESSMENT (LCA)... (GEAFIATA AMALIA NURBAITI)

Impact category	tur	Total	Treated water from intuke unit	Treated water from provedimentation unit	Studge from the procedimentation unit	Treated water from the sitruffitration unit	Distribution value
Carriangens	kg CSEDCE og	71,756751	23,469527			20,39369	27,653025
Non-carcinopeus	ke CSDCI no	25,40955	12,256909	0,000476804	4,60904627	5,9421118	7,1990989
Empiratory morganics	lg PIC 5 mg	12,021283	18,51363			16,362348	25,34530
Soniting radiation	SQC-Heq	7908,5822	4081,2444			1319,8895	1801,4402
Ocose laper depletion	kg CFC-11 eq	0,000300849	0,000295344			4,465.05	4,118-05
Respiratory organics	kg CSH eq	0,34876275	0,12671298			0,099793896	0,3280094
Aquatic reoriesicity	kg TEO water	12912025	6101242,9	680,027	41882,211	691506,3	411007,9
Terestral ecoloxicity	kg TEG soil	27527,367	14912/997	2,746-11	2,776-10	535,690	7279,8465
Terestral acid tetri	kg 900 eq	66,372787	22,610791			28,469728	25,290327
Land companion	m/regueble	2,3798185	4,2544817			1,1171948	1,8219799
Aquatic acidification	kg 900 eq	11,603335	6,0797965			4,97829	4,7660335
Aquatic estrophication	kg PO4 P-lm	1,670901	0,54233948			0,47953408	9,6559025
Clobal warming	kg 000 eq	3574,0379	1223,9186			99(,548)9	1994,296
Nos reservable europy	Mi primary	4384,65	15344,68			12087,384	16112,396
Marral retraction		25,26446	16,584837			3,6632396	5,010/894


Gambar -8. Characterization (Non Konvensional)

Impact	twi	Total	Treated water from lotale unit	Treated water from procedimentation unit	Shelp from the precedence or time unit	Toward water from the services unit	Treated water from do- compulation	Treated water from the Bernslation and	Ph-	Timesed water from the selfmentation and	Shelp from the sedimentation and	Treated water from the filtration	Distribution water
Carologea	DALY	0,00046973	6,495.00			1,216.40	6,000217712	-				L19E46	0,0001402/2
Non- mensogen	DALY	0,001177544	3,358-45	4,94E-06	7,016-08	1,04E-06	4,4610,9065	-		2,46E-05	2,496-07	1,ME-85	3,32645
Emperatory merganers	DALY	0,068240976	0,012791711			CWISEMER	0,012822201	-				0,000103965	0,017179260
longing radiation	DALY	4,90E-86	1,145.41			4,11E-08	5,816.46	-			-	5,426-86	1,005-07
Occur layer depletion	DALY	LHE47	2,648.07	-		1,016-06	1,296.01	-				9,525-09	1,356-47
Responsely regions	DALY	2,14E-06	2,678.40			4,40E-08	1,345-06					4,000.46	1,746-47
Agents	PERMIT	3470,0034	223,47367	218,06610	2,2029923	254,74750	3550,3975			774,77898	7,8260703	275,59286	209,11095
Terrentral acceptable	PDF1m21ye	1175,6004	111,49009	2,176-10	2,146-12	1,40000	945,53415	-		7,718-10	7,766-12	1,3481337	101,46099
Terrestrud wind mater	PSF NO.	162,78133	21,240425			4,238615	75,955067	-		-		3,8954389	23,489007
Condition.	POFINITY	52,390943	4,5922800			6,H1360/C	42,0760	-				0,28028014	4,0148007
Aquatic													
Aquatic extrastication	. 2												-
Clotal	kg 000 eq	7073,993	1209,1205			218,71765	3381,6815	-				301,36732	2903,2997
Non- marrighte margy	Milpinary	100752,3	15101,90		-	2889,9283	45499,324		-			3415,698	34912,849
Morel	Mi primary	1277,4645	14,86403			0,42797364	1256,1756	-	-	-	-	0,38560254	1,4427978


Gambar -9. Damage Assessment (Konvensional)

Impact category	ter	Total	Treated vater from intuke unit	Treated water from procedimentation unit	Shelp from the pracedimentation unit	Treated water from the altrafiltration unit	Distribution water
Carcinogram	DALY	1,000	6,578-15			1,852.45	1,745.85
No-carcinopea	DALY	1,036-46	3,4845	54E-9	384	1,615.45	23102-85
Registery inorganics	DALY	0,040412	0,029			6,6004	030760
Desiring radiation	DALY	1,17E-06	CHEAT			27847	3,81E-17
Coose layer depletion	DALY	3,362-07	28641			4,602-08	6,425.05
Registry opinio	DALY	7,438.47	27647			2,006-07	2,798.67
Agustic econosicity	-	68,1177	25,504	CIME	2,30389	20,740	307,479
Teretral autoscity	RDF7w27vr	217,7414	118,1129	2,176-13	2,19E-12	42,0411	57,58043
Terestrial acid/autoi	10F%2*r	6,077	25,71716			19,20010	36,0040
Land competion	10Fn25y	1,0940	4,6750			1,039	1,96000
Aquatic acidification	,						
Aquatic entrophication	,						
Global varning	kg/000/eg	3874,887	1225,989			90(340	1381,231
No rearrable mergy	M primary	40994,40	1594,68			12007,38	16002,39
Maral estacios		25,2645	16,75454			3,66122	5,000,000

Gambar -10. Damage Assessment (Non Konvensional)

Gambar -11. Normalization (Konvensional)


Gambar -12. Normalization (Non Konvensional)

Impart category	Cuin	Tetal	Toured water from intake unit	Treated water from pracedimentation unit	Shelps from the precedimentation unit	Treated water from the services unit	Treated water from the congulation unit	Treated water from the florrelation unit	Flor	Treated water from the selfmentation	Sindy from the refinentation unit	Treated water from the filtration and	Distribution
Treal	ħ	1,534,964	2,0032789	1,696-15	1,0017900	0,6000	2,730,986	-		6,00E-05	0,000606702	0,40471372	2,7655002
Carcinogen	Pi	630119662	1,00001769			6,861,8653	8,829947539	-	-	-	-	0,001641996	0,010912579
Non- carcinopes	h	0,18000748	0,004831332	9,788-47	9,3112-06	6,901275028	0,1494880	-		3,47E-06	3,518-45	0,000332903	0,002940081
Імренну порию	P	6,7262944	1,1272976			0,40362673	1,6281418	-	-			0,37925443	2,4820140
Southing reduction	ħ	6,010897964	6,000123807			8,75E-06	6,000703034					\$,07E-06	1,01E-01
Ottone layer depletion	ħ	0,000114441	2,886-05			1,485-06	1,378.45					1,565-56	9,17E-86
Empirery organics	n	0,00036048	3,E1E-05			6,305.06	6,000171779	-	-			1,805.06	3,816.01
Aquetic	h	0,32632946	0,006729004	1,398.45	0,000100011	6313478223	0,25925984		-	5,662-05	0,000571302	6,608120651	0,013147401
Terretral	ħ	6,001304912	6,0096222VI	1,588-17	1,605-16	630067339	0.009100412			5,636-17	5,685-16	0,000(326)	4,8608767
Terrestrial and sumi	ħ	0,009649271	0,005716607			0,000513967	0.000409016	-	-			E00028E186	4,000,00017
Land	h	4,000,000	6,000338228			2,358.46	6,900128840	-	-			2,148.40	0,000143336
Aquatic andification	ħ		0										
Aquete entrophication	n		0				-	-	-				
OLAG Tarming	h	0,63395671	6,12341992			6,003491675	6,31081967					6,62963128	6,13799427
Non- represable energy	r	0,0352406	0,300968			0,317909093	0,29174144					0,004030047	0,30892700
Moreal	ħ	6,009405987	4,000109129			5,400-06	0,000,000					4,96E-06	3,986-45

Gambar -13. Weighting (Konvensional)

Impart category	Eat	Total	Treated water from intake unit	Treated water from pracedimentation unit	Study from the pracedimentation unit	Treated water from the ultrafiltration unit	Distribution water
Total	h	6,8791389	2,9632788	LHE45	0,980176688	2,023038	2,7632997
Cardeges	h	0,03115853	0,000,00740			0,00791254	0,000917545
Ne oringes	h	0,00043536	0,004031132	57847	1,002-06	0,90236738	0.002039612
Respiratory inorganics	h	6,1215004	1,0272075			1,82967	2,4616902
losining radiation	h	0,000216407	0,000123807			3,915-15	5,098-45
Otone layer depletion	h	4,456-45	2,006.45			6,618-06	9,14E-06
Register oppio	h	0,00004744	3,818-46			2308-65	3,038-45
Agustic controllery	h	0,047390705	0,000,0004	1,546-45	118090380,0	0,0574948	0,0004967
Tremenal monoscini	h	0,013895122	0,989622340	1,566-07	1,616-16	0,00000012	6300037
Terretrial acid torni	Pr	0,001099022	0,00173007			0,9040222	0,000,000
Land recognition	ħ	0,000186894	0,000,0029		,	0,00114022	0,000343543
Agustic scidification	h						
Aquatic extredication	h						
Global warning	h	4,3697796	0,039090			0,000967	0,13738128
No-restulle mage	Pi	0,20942768	0,300968			0,079/34967	0,3099147
Mared estaction	h	0,0000624	0,000109129			2,408-45	3,386-45

Gambar -14. Weighting (Konvensional)

Gambar -15. Single Score (Konvensional)

Gambar -16. Single Score (Non Konvensional)

Berdasarkan hasil LCIA proses pengolahan air bersih di IPA Siwalanpanji, dapat di amati bahwa baik pengolahan konvensional maupun non konvensional turut serta menyumbang dampak ke lingkungan yang cukup signifikan. Namun, dari kedua jenis pengolahan tersebut, pengolahan konvensional merupakan kontributor terbesar dalam

E-ISSN: 2777-1032 P-ISSN: 2777-1040 menyumbang dampak ke lingkungan dibandingkan pengolahan non konvensional. Hal ini dibuktikan pada nilai weighting dan single score yang tertera pada masing-masing jenis pengolahan. Adapun total weighting dan single score pada pengolahan konvensional sebesar 8,53 Pt. Sementara total weighting dan single score pada pengolahan non konvensional sebesar 6,88 Pt.

C. Faktor Penyebab Dampak Lingkungan

Dampak respiratory inorganics berasal dari penggunaan bahan kimia seperti koagulan dan disinfektan. Beberapa emisi zat pencemar yang berkontribusi terhadap respiratory inorganics yaitu Ammonia, Nitrogen Monoxide, Nitrogen Oxide, Particulate <2,5 mm, Sulfur Dioxide, Sulfur Trioxide (Permatasari & Apriliani, 2013).

Dampak global warming terjadi akibat dari penggunaan konsumsi listrik pada tiap unit pengolahan. Hal ini dikarenakan listrik yang diproduksi di Indonesia sebagian besar masih menggunakan bahan bakar fossil (batu bara) yang mana batu bara tersebut pun murni dari karbon, sehingga pembakaran yang terjadi menyebabkan timbulnya polusi Karbondioksida (CO₂), dimana gas ini menjadi penyumbang terbesar yang menyebabkan adanya pemanasan global (Pratama & Parinduri, 2019). Emisi zat pencemar yang berkontribusi yaitu Carbon dioxide, Ethane, Methane, Sulfur hexafluoride, Dinitrogen Monoksida, Carbon Monoxide (Hermawan dkk., 2013).

Dampak non-renewable energy berasal dari penggunaan listrik setiap unit pengolahan. Hal ini didasari karena di Indonesia penggunaan bahan bakar minyak dan batubara masih menjadi peringkat pertama sebagai sumber energi utama untuk pembangkit listrik (Adzikri dkk., 2017). Zat pencemar yang mempengaruhi dampak non-renewable energy berasal dari Coal, Brown Sebesar; Coal, Hard; Gas, Mine, Off-Gas, Process, Coal; Gas, Natural/m³; Oil, Cruide; Peat; Uranium.

D. Rekomendasi Alternatif Perbaikan

Harapan pemberian alternatif perbaikan supaya dapat mengurangi atau bahkan mencegah ketiga dampak terbesar tersebut. Rekomendasi yang dapat diberikan berupa peningkatan efisiensi peralatan (skenario 1) dan substitusi *Poly Aluminium Chloride* dengan *Aluminium Sulfate* (skenario 2). Peralatan

listrik dan pompa yang sudah tua dapat menyebabkan penurunan kinerja dari alat tersebut. Pasalnya, tanpa disadari peralatan yang telah usang membutuhkan energi lebih banyak jika dibandingkan dengan peralatan baru (Kusna & Setijani, 2018). Maka, upaya yang tepat untuk mengatasi hal ini ialah mengganti peralatan yang sudah tua dengan peralatan yang baru. Selain mengganti peralatan yang baru. Selain mengganti peralatan yang tua dengan yang baru, solusi efisiensi peralatan lainnya adalah melakukan pemeliharaan (maintenance) alat. Dengan melakukan pemeliharaan alat yang baik dan benar dapat membantu memperpanjang usia dari suatu alat.

Dampak terbesar	Eksisting (Pt)	Skenario (Pt)	Penurunan (%)
Respiratory inorganics	6,72	4,87	27,52
Global Warming	0,636	0,534	16
Non-renewable Energy	0,536	0,455	15,11

Gambar -17. Perbandingan Dampak Lingkungan yang Terjadi Sebelum dan Sesudah Skenario 1 (Pengolahan Konvensional)

Dampak terbesar	Eksisting (Pt)	Skenario (Pt)	Penurunan (%)
Respiratory inorganics	6,12	3,97	35,1
Global Warming	0,361	0,242	32,96
Non-renewable Energy	0,289	0,195	32,52

Gambar -18. Perbandingan Dampak Lingkungan yang Terjadi Sebelum dan Sesudah Skenario 1 (Pengolahan Non Konvensional)

Dampak terbesar	Eksisting (Pt)	Skenario (Pt)	Penurunan (%)		
Respiratory inorganics	6,72	6,56	2,38		
Global Warming	0,636	0,494	22,32		
Non-renewable Energy	0,536	0,425	20,7		

Gambar -19. Perbandingan Dampak Lingkungan yang Terjadi Sebelum dan Sesudah Skenario 2 (Pengolahan Konvensional)

Pada proses pengolahan air bersih pengolahan non konvensional ini tidak dilaksanakan skenario 2, hal ini dikarenakan pada proses pengolahan non konvensional telah menerapkan unit ultrafiltrasi, sehingga tidak memerlukan koagulan dalam proses pengoperasiannya.

Serta melakukan upaya preventif lainnya seperti reboisasi, pengendalian jam operasi pompa, memberikan pengarahan kepada

E-ISSN: 2777-1032 envirous.upnjatim.ac.id P-ISSN: 2777-1040 seluruh karyawan agar memperhatikan penggunaan alat keselamatan kerja ketika sedang bekerja, mengonsumsi makanan bergizi dan vitamin, serta menjaga kebersihan diri dan lingkungan kerja.

E. Tahap Evaluasi

- 1. Cek kelengkapan, bertujuan untuk memberikan kepastian bahwa data yang telah diperolah benar-benar lengkap untuk selanjutnya di *running* pada *software*.
- Analisis sensitivitas, bertujuan untuk menilai keandalan hasil akhir dan kesimpulan dengan menentukan bagaimana keduanya dipengaruhi oleh ketidakpastian data, metode alokasi atau perhitungan hasil indikator kategori, dan lainnya.
- Cek konsistensi, guna menyelidiki apakah asumsi, metode dan data telah diterapkan secara konsisten selama studi LCA.

KESIMPULAN

Beberapa kesimpulan yang dapat ditarik berdasakan penelitian yang telah dilakukan adalah sebagai berikut:

- 1. Ketiga dampak terbesar yang muncul akibat proses pengolahan air bersih dengan lingkup gate to gate pada pengolahan konvensional dan non konvensional yaitu respiratory inorganics, global warming, dan nonrenewable energy. Sementara kontributor terbesar yang turut berperan menyumbang dampak lingkungan yang cukup signifikan akibat proses pengolahan air bersih berasal dari unit intake, aerasi, koagulasi, filtrasi, ultrafiltrasi, dan reservoar.
- 2. Faktor penyebab timbulnya dampak respiratory inorganics pada proses pengolahan air bersih berasal dari pemberian bahan kimia berupa koagulan dan disinfektan. Sedangkan dampak global warming dan non-renewable energy berasal dari penggunaan listrik.
- 3. Rekomendasi alternatif perbaikan yang dapat diberikan antara lain dengan meningkatkan efisiensi peralatan, substitusi Poly Aluminium Chloride dengan Aluminium Sulfate, serta melakukan upaya preventif lainnya seperti reboisasi, pengendalian jam operasi pompa,

memberikan pengarahan kepada seluruh karyawan agar memperhatikan penggunaan alat keselamatan kerja ketika sedang bekerja, mengonsumsi makanan bergizi dan vitamin, serta menjaga kebersihan diri dan lingkungan kerja.

UCAPAN TERIMA KASIH

Peneliti mengucapkan terima kasih kepada PDAM Delta Tirta Sidoarjo atas dukungan data serta segala bentuk bantuan yang diberikan.

DAFTAR PUSTAKA

- Acero, A. P., Rodríguez, C., & Ciroth, A. (2014). LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories. Greendelta.
- Adzikri, F., Notosudjono, D., & Suhendi, D. (2017). Strategi Pengembangan Energi Terbarukan di Indonesia. *Jurnal Online Mahasiswa Bidang Teknik Elektro*, 1(1), 1-13.
- Althaus, H., Bauer, C., Doka, G., Dones, R., Frischknecht, R., Hellweg, S., Humbert, S., Jungbluth, N., Köllner, T., Loerincik, Y., Margni, M., & Nemecek, T. (2010). Implementation of Life Cycle Impact Assessment Methods, ecoinvent report No. 3, v2.2. Swiss Centre for Life Cycle Inventories.
- Bhaskoro, R. G. E., & Ramadhan, T. (2018). Evaluasi Kinerja Instalasi Pengolahan Air Minum (IPAM) Karangpilang I PDAM Surya Sembada. *Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan*, 15(2), 62-68.
- Hamonangan, S. P., Handayani, N. U., & Bakhtiar, A. (2017). Evaluasi Dampak Proses Produksi Dan Pengolahan Limbah Minuman Isotonik Mizone Terhadap Lingkungan Dengan Metode Life Cycle Assessment. *Industrial Engineering Online Journal*, 6(2), 1-14.
- Hermawan, Marzuki, P. F., Abduh, M., & Driejana, R. (2013). Peran Life Cycle Analysis (LCA) Pada Material Konstruksi Dalam Upaya Menurunkan Dampak Emisi Karbon Dioksida Pada Efek Gas Rumah Kaca. *Konferensi Nasional Teknik Sipil 7*, 47-52.

Kusna, I., & Setijani, E. (2018). Analisis

E-ISSN: 2777-1032 envirous.upnjatim.ac.id 26 P-ISSN: 2777-1040

Pengaruh Kinerja Keuangan Growth Opportunity Dan Ukuran Perusahaan Terhadap Struktur Modal. *Jurnal Manajemen & Kewirausahaan*, 6(1), 93-102.

Permatasari, T. J., & Apriliani, E. (2013). Optimasi Penggunaan Koagulan Dalam Proses Penjernihan Air. *Jurnal Sains dan Seni Pomits*, 2(1), 6-11.

Pratama, R., & Parinduri, L. (2019). Penanggulangan Pemanasan Global. Buletin Utama Teknik, 15(1), 91–95.

E-ISSN: 2777-1032 envirous.upnjatim.ac.id 27

P-ISSN: 2777-1040